Modification of soybean sucrose synthase by S-thiolation with ENOD40 peptide A.
نویسندگان
چکیده
The gene ENOD40 is expressed at an early stage of root nodule organogenesis and has been postulated to play a central regulatory role in the Rhizobium-legume interaction. In vitro translation of soybean ENOD40 mRNA showed that the gene encodes two peptides of 12 and 24aa residues (peptides A and B) that bind to sucrose synthase. Here we show that the small Cys-containing peptide A binds to sucrose synthase by disulfide bond formation, which may represent a novel form of posttranslational modification of this important metabolic enzyme. Assays using nanomolar concentrations of peptide A revealed that the monomeric reduced form of this peptide binds to purified sucrose synthase. Using a cysteinyl capture strategy combined with MALDI-TOF MS analysis we identified the Cys residue C264 of soybean sucrose synthase as the binding site of peptide A. Modification of sucrose synthase with ENOD40 peptide A activates sucrose cleavage activity whereas the synthesis activity of the enzyme is unaffected. The results are discussed in relation to the role of sucrose synthase in the control of sucrose utilization in nitrogen-fixing nodules.
منابع مشابه
Soybean ENOD40 encodes two peptides that bind to sucrose synthase.
ENOD40 is expressed at an early stage in root nodule organogenesis in legumes. Identification of ENOD40 homologs in nonleguminous plants suggests that this gene may have a more general biological function. In vitro translation of soybean ENOD40 mRNA in wheat germ extracts revealed that the conserved nucleotide sequence at the 5' end (region I) encodes two peptides of 12 and 24 aa residues (pept...
متن کاملWhat makes a good healthcare system?: comparisons, values, drivers
enod40 is a plant gene that participates in the regulation of symbiotic interaction between leguminous plants and bacteria or fungi. Furthermore, it has been suggested to play a general role in nonsymbiotic plant development. Although enod40 seems to have multiple functions, being present in many land plants, the molecular mechanisms of its activity are unclear; they may be determined though, b...
متن کاملStress-induced protein S-glutathionylation in Arabidopsis.
S-Glutathionylation (thiolation) is a ubiquitous redox-sensitive and reversible modification of protein cysteinyl residues that can directly regulate their activity. While well established in animals, little is known about the formation and function of these mixed disulfides in plants. After labeling the intracellular glutathione pool with [35S]cysteine, suspension cultures of Arabidopsis (Arab...
متن کاملStructural motifs in the RNA encoded by the early nodulation gene enod40 of soybean.
The plant gene enod40 is highly conserved among legumes and also present in various non-legume species. It is presumed to play a central regulatory role in the Rhizobium-legume interaction, being expressed well before the initiation of cortical cell divisions resulting in nodule formation. Two small peptides encoded by enod40 mRNA as well as its secondary structure have been shown to be key ele...
متن کاملSucrose synthase of soybean nodules.
SUCROSE SYNTHASE (UDPGLUCOSE: d-fructose 2-alpha-d-glucosyl transferase, EC 2.4.1.13) has been purified from the plant cytosolic fraction of soybean (Glycine max L. Merr cv Williams) nodules. The native enzyme had a molecular weight of 400,000. The subunit molecular weight was 90,000 and a tetrameric structure is proposed for soybean nodule sucrose synthase. Optimum activity in the sucrose clea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical and biophysical research communications
دوره 325 3 شماره
صفحات -
تاریخ انتشار 2004